
Obiettivo:

Conoscere le principali fonti di inquinamento di acqua, suolo e cibo

Conoscere gli effetti dell'inquinamento sulla salute

Conoscere le più semplici modalità di riduzione dei rischi

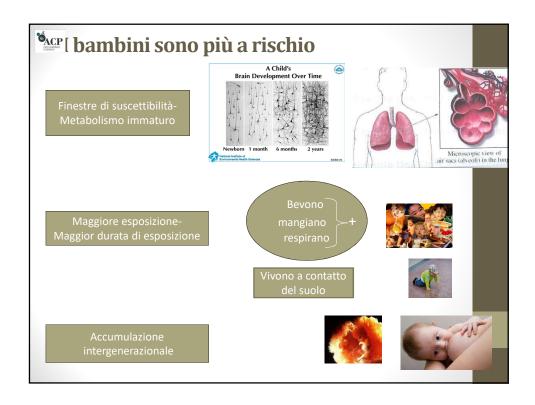
Nel 2018, l'OMS ha stimato il carico di malattia causato dall'esposizione a sostanze chimiche nell'ambiente in

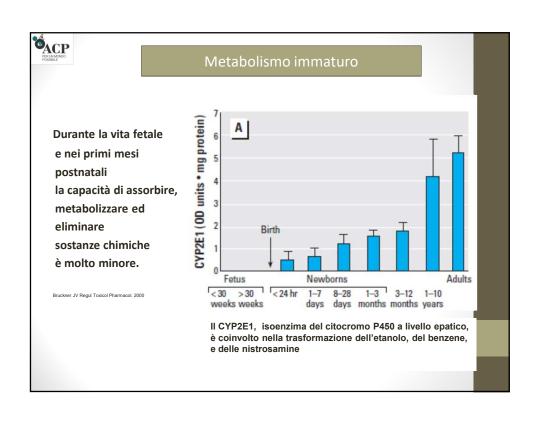
1,6 milioni di vite e

45 milioni di DALY (disability-adjusted life years).

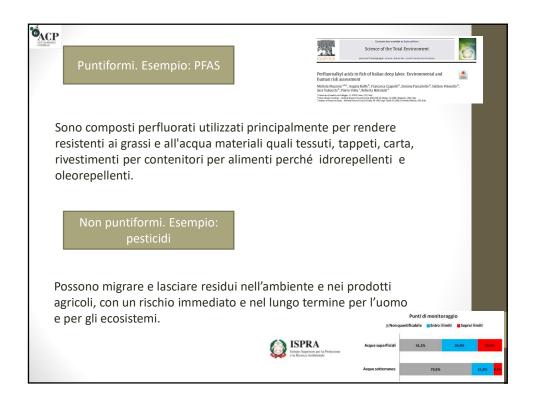
Sostanze non biodegradabili o a lentissima biodegradazione

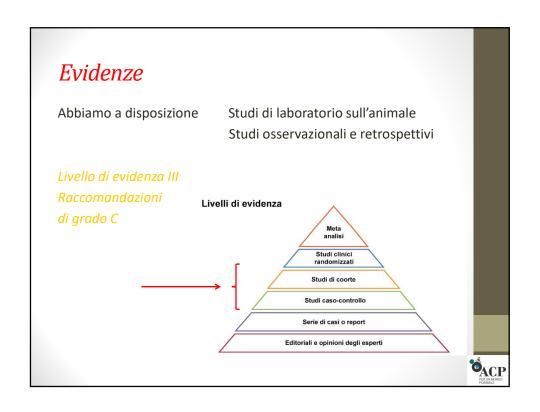
Si disperdono nell'ambiente concentrandosi in aria, acqua e terreno





Entro il 2030, ridurre sostanzialmente il numero di morti e malattie da prodotti chimici pericolosi e da inquinamento atmosferico, idrico e del suolo.


Entro il 2020, realizzare una gestione ecologicamente corretta delle sostanze chimiche e di tutti i rifiuti lungo tutto il loro ciclo di vita, e ridurre significativamente il loro rilascio nell'aria, nell'acqua e nel suolo al fine di ridurre al minimo i loro impatti negativi sulla salute umana e l'ambiente.



Alimenti Acqua	Inquinanti piombo, arsenico, mercurio, benzene,
Acqua	piombo, arsenico, mercurio, benzene,
	policlorobifenili, pesticidi, diossine
arne	estrogeni e pesticidi
arni trattate	nitroso-composti
rutta, succhi di frutta e verdura	pesticidi e tutti i contaminanti dell'acqua
atte	pesticidi, diossine, policlorobifenili
pesce	piombo, mercurio, diossine, policlorobifenili

1) Alterazioni endocrine	Bisfenolo- Ftalati (plasticizzanti) Pesticidi Diossine Policlorobifenili (nei fluidi dielettrici, come aditivi in vernici, ecc.)
2) Alterazioni SNC	Asenico Manganese Mercurio Piombo Pesticidi Policlorobifenili Trialometani (refrigeranti, solventi) Tricloroetilene (trielina)
3) Neoplasie	Benzene Arsenico Cromo Nitrati Ftalati (PVC) Pesticidi Diossine Policlorobifenili Tricloroetilene

ALTERAZIONI ENDOCRINE

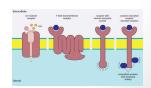
Un interferente endocrino è definito come una sostanza o una mistura di sostanze esogene capace di alterare le funzioni del sistema endocrino e quindi di causare effetti avversi sulla salute di un organismo o della sua progenie. (1,2)

ACP

EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

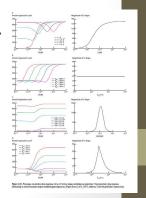
A. C. Gore, V. A. Chappell, S. E. Fenton, J. A. Flaws, A. Nadal, G. S. Prins, J. Toppari, and R. T. Zoeller

Endocrine Reviews press.endocrine.org/journal/edrv


Modalità di azione

- Azione sui recettori ormonali con attività simile agli ormoni o come antagonisti.
- Azione sulle proteine che controllano il rilascio dell' ormone dai tessuti.
- Alterazione dei meccanismi epigenetici ormono-dipendenti che definiscono e controllano lo sviluppo dei tessuti regolando l'epigenoma.

Proprio grazie a questa loro capacità alcuni interferenti si sono dimostrati in grado di provocare anche effetti transgenerazionali "ereditabili".


Modalità di azione

Gli IE producono degli effetti con <u>curve di risposta non lineari</u> sia in vitro che in vivo.

Possono inoltre svolgere azioni diverse simultaneamente.

Negli ultimi dieci anni è stato dimostrato che molte sostanze possono agire con <u>effetto sinergico</u>, determinando effetti non osservabili singolarmente.

Quasi tutti gli studi effettuati si sono concentrati sul rapporto tra una singola classe di molecole e un gruppo di malattie senza considerare l' effetto cocktail di queste sostanze.

Alcune molecole con attività endocrina (2)		
Classe	Molecole	
POPs (inquinanti organici persistenti)	Diossine, Furani, Policlorobifenili, aldrin, clordano, DDT, dieldrin, endrin, eptacloro, mirex, toxafene,esaclorofene Esaclorobenenzene	
Plasticizzanti	Ftalati, Bisfenolo	
Idrocarburi policiclici aromatici	Benzo(a)pyrene,	
Pesticidi	Atrazine, Malathion, Mancozeb, Chlorpyrifos, Fenitrothion, Linuron	
Metalli e metalloidi	Arsenico, Cadmio, Piombo, Mercurio, Metilmercurio	
Composti fenolici	Triclosan	

nterferenti endocrini e salute

• Tumori

Associazioni tra incidenza di tumori ormono-sensibili del seno, utero, ovaio e diossine, alcuni pesticidi ,BPA, ftalati, e acido perfluorottanico (PFOA)

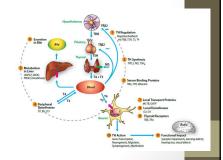
• Salute riproduttiva femminile

Un ruolo degli IE nella multicasualità di **sindrome dell'ovaio policistico** (PCOS), **fibromi uterini** ed **endometriosi** è plausibile <u>dati sperimentali e osservazionali</u> sul ruolo di PCB, Ftalati, Diossina

• Salute riproduttiva maschile

Alcuni studi epidemiologici hanno dimostrato una associazione tra esposizione ad IE e **criptorchidismo e ipospadia** (studi su lavoratori agricoli, su esposti professionalmente a pesticidi clorurati, e a diossine). (3)

SACP

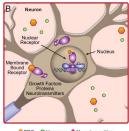

Disordini correlati alla tiroide

Patologie della tiroide sono aumentate anche nei bambini e negli adolescenti. Elevate incidenze di ipotiroidismo subclinico anche negli adolescenti.

Ci sono buone evidenze da studi su animali e sull' uomo di una correlazione tra esposizioni a IE e patologie correlate alla funzione tiroidea.

PCB - Ritardanti di fiamma bromurati Ftalati - bisfenolo A Sostanze chimiche perfluorurate

Studi osservazionali mettono in correlazione deficit cognitivi infantili Ed esposizione prenatale a IE tiroidei


ACP

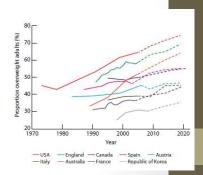
• Disturbi del neurosviluppo nei bambini (4,5)

I bambini - soprattutto durante lo sviluppo fetale - sono molto sensibili agli effetti neurotossici di alcune sostanze come <u>piombo e mercurio</u>, anche a basse concentrazioni sia con **effetti neurotossici diretti**, sia con **effetti sulla funzione tiroidea**, o attraverso meccanismi epigenetici.

I neuroni e le cellule gliali, i processi di sviluppo e modificazione delle sinapsi, il sistema dei neurotrasmettitori, sono ormono-dipendenti.

Ci sono evidenze per ipotizzare che l'esposizione durante lo sviluppo fetale aPiombo, <u>PCB</u> e numerosi <u>pesticidi organi fosforici</u> correli con deficit cognitivi

ACP


• Disturbi metabolici : Obesità (6) e Diabete (7)

Prevalenza aumentata drammaticamente.

L'obesità è una patologia correlata al sistema endocrino causata dall' **interazione tra fattori genetici, comportamentali ed ambientali** In studi animali ed in studi epidemiologici

bisfenolo, Ftalati, arsenico, diossina, PCB sono correlati a obesità.

L'incidenza del diabete di tipo 2 è in aumento bisfenolo A, ftalati, ritardanti di fiamma, arsenico, POP, e pesticidi sono risultati correlati sia in studi su animali sia in studi epidemiologici.

ALTERAZIONI del SNC

- ☐ Molte sostanze chimiche possono causare alterazioni del SNC con meccanismi diversi
- ☐ Più l'esposizione è precoce (per esposizione prenatale) più i danni sono permanenti e invalidanti

Nei test di routine per le sostanze chimiche non era richiesta la valutazione di neurotossicità entrata in vigore solo da fine 2011 (Progetto REACH: Registration and Authorization Chemical)

Fattori predisponenti (8-10)

- ☐ II SNC ha una elevata vulnerabilità nel periodo evolutivo ("finestra critica di suscettibilità")
- ☐ La placenta non è una barriera efficace e la barriera emato-encefalica è immatura
- ☐ II SNC si sviluppa dal 2° trimestre di gravidanza con massima evoluzione nei primi due anni di vita
- ☐ Il SNC ha capacità limitate di riparare i danni strutturali

Agenti neurotossic

- evidenze per
 - PIOMBO (Pb)
 - MERCURIO (Metil-Hg, Etil-Hg)
 - POLICLOROBIFENILI (PCBs)
 - PESTICIDI (organofosforici, carbamati)

$Piombo_{\scriptscriptstyle{(11,12)}}$

- ☐ Agente neurotossico piu' conosciuto
- ☐ rilasciato nell'ambiente da diverse attivita' industriali:
 - addizionato alla benzina (Pb tetraetilene) e gasolio (divieto dal 1998)
 - Vernici e salti murali
 - Ceramiche invetriate (usate per cottura, conservazione cibi, succhi di frutta)
 - Tubi piombo per incanalare acqua
- ☐ maggiormente tossico nel bambino rispetto all'adulto maggior assorbimento intestinale, ritenzione maggiore, passaggio attraverso la placenta, maggiore rimodellamento osseo

- ☐ Deficit neuropsicologici in adulti che da bambini avevano livelli di piombemia tra 40 e 50 μgr/dl
- Decremento del QI fino a 10 punti con piombemia di 30 μgr/dl
- Deficit neuropsicologici con livelli di piombemia inferiori a 10 μgr/dl
- □ Anche concentrazioni di piombo <5 µg/dL sono fortemente associati a deficit cognitivi, difficoltà di apprendimento, deficit di attenzione e problemi comportamentali.
- ■Non sembra esserci un livello soglia.

Nel sangue: < 5 μgr/dl Nell'acqua: 0,001 mg/

Fonti di esposizione attuali

Attualmente le maggiori fonti di esposizione sono le **vernici al Pb**. Il metallo è ancora presente ad elevate concentrazioni nelle abitazioni costruite prima del 1950.

Altre fonti sono costituite dalla **polvere di casa** contaminata da particelle di vernici, specie durante lavori di ristrutturazione di vecchie case, e dal **terreno**, spesso ancora contaminato dai carburanti al piombo.

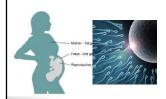
Anche l'acqua, (vecchie condutture di Pb) può essere una fonte importante, così come l'aria nelle vicinanze di impianti di riciclaggio di batterie, aeroporti e inceneritori.

Mercurio (hg) (14.15)

- ☐ Unico metallo liquido a temperatura ambiente
- ☐ Rilasciato nell'ambiente per:
 - combustione carbone
 - incenerimento rifiuti, discariche industriali e agricole
 - applicazioni industriali-mediche: sfigmomanometri, termometri, amalgama dentale.
- ☐ Esposizione maggiore alle forme organiche (Metil-Hg, Etil-Hg)

Metil-mercurio Esposizione più comune: consumo di pesce Concentrazioni piu' elevate: pesci predatori (trota, luccio, pesce persico, tonno, pesce spada) Per esposizione prenatale: epilessia, spasticità, cecità, sordità, ritardo mentale Esposizione postnatale attraverso il latte materno: alterazioni neuropsicologiche (linguaggio, memoria, funzioni visu-spaziali e motorie)

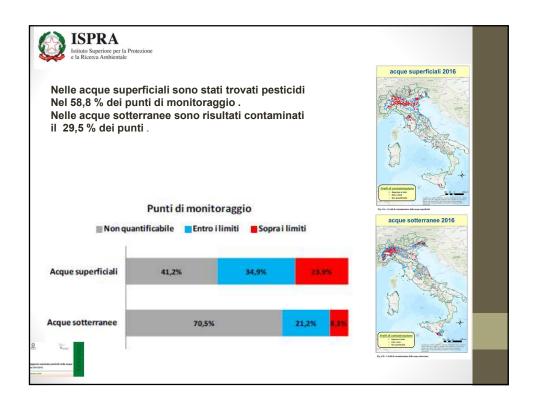
Neoplasie Interazione tra fattori genetici/epigenetici e fattori ambientali Lunga fase di latenza Possibile relazione tra l'esposizione prenatale dei genitori e lo sviluppo di neoplasie nei figli


Sostanze chimiche e neoplasie

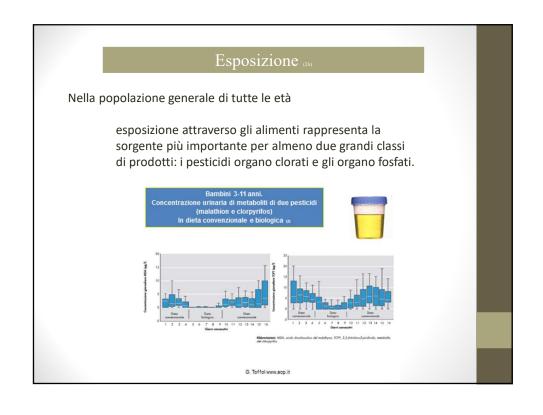
CONTAMINANTI CHIMICI	NEOPLASIE
Benzene	Leucemia Linfoblastica Acuta (LLA)
N-Nitroso composti	Linfoma Non Hodgkin (LNH), colon, vescica
PCBS	LLA
Pesticidi	LLA, LNH, SNC
Tricloroetilene	LLA
Arsenico	LLA, cute, polmoni, vescica
Cromo	LLA, polmoni
Polivinilcloruro (PVC)	LLA, SNC
Diossine	LLA, tumori epatici
Acrilammide	Tumori nell'animale da esperimento
Furano	Tumori nell'animale da esperimento
Acido perfluorottanoico (PFOA)	Tumori nell'animale da esperimento

Esposizione parentale

Alcuni studi recenti dimostrano una possibile correlazione tra esposizione prenatale dei genitori a sostanze chimiche e lo sviluppo di neoplasie nei figli. L'esposizione può verificarsi in epoca preconcezionale (sperma, ovulo) e in utero.



Esposizione materna (2021) Mercurio, pesticidi, piombo, solventi (cuoche, parrucchiere, operaie chimiche e agricole) Detersivi, prodotti per la casa (attività domestica) Diossine, mercurio, nitrati, pesticidi, piombo, policlorobifenili (con gli alimenti contaminati)



PESTICIDI

- ☐ I pesticidi sono sostanze chimiche create per proteggere le coltivazioni, preservare gli alimenti e prevenire le malattie trasmesse da insetti.
- ☐ Sostanze tossiche per definizione, usati proprio per la loro capacità di uccidere, ridurre o respingere insetti, erbe infestanti, roditori, funghi, alghe e altri organismi.
- ☐ Agiscono sugli agenti infestanti bloccando sistemi metabolici o inibendo enzimi, spesso molto simili o addirittura identici a quelli umani.
- ☐ Non sono selettivi, questo rappresenta un rischio per la salute dell'uomo e dell'ambiente.
- ☐ Effetti importanti per esposizioni prolungate anche a basse dosi.

Classificazione chimica	Meccanismo d'azione	Esempi
Carbamati	Inibizione acetilcolinesterasi	Carbaryl, Aldicarb, Maneb
Organoclorati	Depolarizzazione membrane nervose	DDT, DDE, Lindano, Clordano
Organofosfati	Inibizione acetilcolinesterasi	Parathion, Malathion, Clorpyrifos
Piretroidi	Danno permeabilità sodio mb. nervose	Deltametrin, Permetrin, Fenvalerato

Esposizione prenatale (29-31)

L' esposizione paterna e materna ai pesticidi è collegata ad un maggior rischio di:

- · Aborto spontaneo
- Natimortalità
- Morte fetale

Maggior rischio anche di difetti congeniti:

- Labiopalatoschisi
- Difetti degli arti
- · Difetti del tubo neurale

Maggior rischio di neoplasie nella prole

Pesticidi e neoplasie (32

1998 - 2017

- □ 10 revisioni sistematiche della letteratura: rapporto tra pesticidi e singoli tumori in età pediatrica.

 (leucemie, linfomi e tumori cerebrali, soprattutto, ma anche neuroblastoma e Tumore di Wilms)
- ☐ Tutte , tranne quella sul Neuroblastoma, mostrano una associazione positiva e spesso significativa tra rischio di tumori e esposizione a pesticidi indoor e outdoor, in particolare durante la gravidanza e nei primi 2-3 anni di vita.
- ☐ Sono necessari follow-up più lunghi delle coorti esistenti, con misure più accurate e indici più obiettivi dell' esposizione

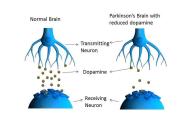
Pesticidi e neurosviluppo (33-35)

☐ Associazione tra esposizione a mancozeb prenatale e disturbi del neurosviluppo ad 1 anno (funzioni motorie e socio-emozionali)

ETU urinaria in gravidanza più elevata era associata a punteggi più bassi. Punteggi inferiori del 7 % per i livelli più elevati di ETU materno

☐ Associazione tra esposizione prenatale a clorpyrifos (p. organofosfato) nel sangue del cordone ombelicale e abilità cognitive a 7 anni.

Riduzione della capacità di memoria.


☐ Associazione tra esposizione pre e postnatale a pesticidi organofosfati e abilità cognitive in bambini spagnoli di 7-11 anni.

Riduzione dei test di comprensione verbale e del QI

Pesticidi e Parkinson (34)

Revisione sistematica 2017 di buoni studi epidemiologici su pesticidi e Morbo di Parkinson. Analisi di 23 pubblicazioni relative all'esposizione lavorativa ai pesticidi. (20)

La stima del rischio relativo ponderato era 1,67 (IC 95% 1,42-1,97).

vecret n° 2012-655 du 4 mai 2012 révisant et complétant les tableaux des maladies professionnelles en agriculture annexés au livre VII du code rural et de la péche maritime

Study Year RR (95% CI) Wegget

Case-Control

Contaminazione di acqua, suolo e cibo Indicazioni

Principali azioni preventive

- Attuazione standard di sicurezza per contaminanti negli alimenti e nell'acqua (compresi margini aggiuntivi di sicurezza per i bambini)
- Politiche di riduzione dei più comuni contaminanti di acqua e suolo
- Politiche per ridurre la contaminazione puntiforme
- Controllo e monitoraggio dei contaminanti biologici e chimici in acqua e alimenti
- Etichettatura degli alimenti
- •Informazione ai genitori sui possibili contaminanti in acqua e alimenti e sui principi per una dieta sicura
- Avvisi pubblici su uso di acque o alimenti potenzialmente contaminati

Contaminazione di acqua, suolo e cibo indicazioni - dieta

Obiettivo

Riduzione assunzione possibili contaminanti con la dieta

- Massima varietà
- Carne: limitare il consumo di carni trattate (salumi, insaccati)
- · Pesce: attenzione ai diversi tipi
- Frutta e verdura: lavaggio accurato
- Alimentazione biologica

Contaminazione di acqua, suolo e cibo indicazioni- dieta

Consumo di pesce

- Mangiare pesce piccolo piuttosto che pesce grande.
- Mangiare meno pesce grasso (sgombro, carpa, pescegatto, trota) che accumula maggiori livelli di sostanze chimiche tossiche.
- •Togliere la pelle e le aree grasse dove si accumulano i contaminanti (PCBs DDT) (il metilmercurio si accumula nei muscoli).
- Particolare attenzione per: donne in età fertile, in gravidanza, che allattano e bambini piccoli.

Contenuto mercurio nel pesce (µg Hg/gr pesce)

pesce spada	1
sgombro	0,73
tonno	0,32
aragosta	0,31

Contaminazione di acqua, suolo e cibo indicazioni - pesticidi

Consigli comportamentali per i lavoratori – residenti aree agricole

- · Lavare adeguatamente gli indumenti di lavoro
- Riparare in casa i bambini, i loro giochi, gli oggetti di uso domestico durante i trattamenti di aree contigue, non arieggiare le abitazioni durante i trattamenti
- Evitare l'attraversamento di aree trattate da poco
- Non usare acque reflue da aree irrigate

rrigate

Grazie per l'attenzione

Bibliografia principale

- Bergman, Åke, et al. State of the science of endocrine disrupting chemicals 2012: an assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme and World Health Organization. World Health
- GORE, Andrea C., et al. EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocrine reviews, 2015, 36.6: E1-E150.
- Runkle J, et al. A systematic review of Mancozeb as a reproductive and developmental hazard.Environ Int. 2017 Feb;99:29-42
- Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology. 2016 Jul;4(4):706-22
- SCHUG, Thaddeus T., et al. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology, 2015, 156.6: 1941-1951.
- Shafei AE, et al. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes. 2018 Jan;14(1):18-
- Howard SG. Developmental Exposure to Endocrine Disrupting Chemicals and Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne). 2018 Sep 3;9:513
- Andersen, Toxicology, 2000
- Adinolfi, Dev Med Child Neurol, 1989
- Rice, Environmental Health Perspectives, 2006 10.
- Lindsky, Brain, 2003
- Silbergeld , Faseb J, 1992

Bibliografia principale

- 13. AAP Council on Environmental Health. Prevention of Childhood Lead Toxicity. Pediatrics 2016;138(1):e20161493
- 14. Tossicità del mercurio: dalla lezione di Minamata agli studi di suscettibilità genetica individuale (1° parte)

Pagine Elettroniche Qacp - 2018: 25(5) - as.1

- 15. Tossicità del mercurio: dalla lezione di Minamata agli studi di suscettibilità genetica individuale (2° parte) Pagine Elettroniche Qacp 2018; 25(6) as.1 Vincenza Briscioli
- 16. Schüz J, Erdmann F. Environmental Exposure and Risk of Childhood Leukemia: An Overview. Arch Med Res. 2016 Nov;47(8):607-614.
- 17.Gunier RB, et al.A task-based assessment of
- parental occupational exposure to pesticides and childhood acute lymphoblastic

leukemia, Environ Res. 2017 Jul:156:57-62.

- 18. Febvey O, Schüz J, et al. Risk of Central Nervous System Tumors in
- Children Related to Parental Occupational Pesticide Exposures in three European Case-Control Studies. J Occup Environ Med. 2016 Oct;58(10):1046-1052.
- 19. Colt JS, Blair A. Parental occupation exposures and risk of childhood cancer. Environ Health Perspect 1998; 106 (suppl.3): 909-25
- 20. Ingelido AM, Ballard TJ, De Felip E et al. Polichlorinated biphenyls (PBCs) and polybromynate diphenyl ethers (PBDEs) in milk from Italian women living in Rome and Venice. Chemosphere 2007: 67(9): s301-6.
- 21. Shea KM. Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics 2003; 111: 1467-74
- 22. De Roos AJ, et al. Parental occupation exposures to chemicals and incidence of neuroblastoma in offsprings. Am J Epidemiol 2001; 154(2): 106-14.
- 23. Van Wijngaarden E, et al. Parental occupation exposure to pesticides and childhood brain cancer. Am J Epidemiol 2003; 157(11): 989-97.

Bibliografia principale

24. Kerr MA, et al. Parental occupational exposure and risk of neuroblastoma: a case-control study. Cancer Causes Control 2000; 11: 635-43.

25. Shu XO, et al. Parental occupation exposure to hydrocarbons and risk of acute lymphocytic leukemia in offspring. Cancer epidemiology biomarkers & prevention 1999; 8: 789-9

26. Lu C et al. Organic diets significantly lower children's dietary exposure to organophosphorus pesticides. Environ Health Perspect 2006;114(2):260-3.

27. BUTLER-DAWSON, Jaime, et al. Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community. Neurotoxicology, 2016, 53: 165-172.

28. HYLAND, Carly; LARIBI, Ouahiba. Review of take-home pesticide exposure pathway in children living in agricultural areas. Environmental research, 2017, 156: 559-570

29. Bell, E. M., I. Hertz-Picciotto and J. J. Beaumont, 'A Case-Control Study of Pesticides and Fetal Death Due to Congenital Anomalies', Epidemiology, vol. 12, no. 2, March 2001, pp. 148–156.

30. Watts, Meriel, Poisoning Our Future: Children and pesticides, Pesticide Action Network Asia and the Pacific, Penang, Malaysia, 2013, p. 58, available at <www.indiaenvironmentportal.org.in/content/385226/poisoning-our-future-children-and-pesticides>.

31. RUDANT, Jérémie, et al. Household exposure to pesticides and risk of childhood hematopoietic malignancies: the ESCALE study (SFCE). Environmental Health Perspectives, 2007, 115.12: 1787-1793.

Bibliografia principale

- 32. Giacomo Toffol, Laura Reali Pesticidi e neoplasie. Pagine Elettroniche Qacp 2018; 25(3) as 1
- 33. MORA, Ana María, et al. Prenatal Mancozeb Exposure, Excess Manganese, and Neurodevelopment at 1 Year of Age in the Infants' Environmental Health (ISA) Study. Environmental health perspectives, 2018, 57007: 1
- 34. RAUH, Virginia, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environmental health perspectives, 2011, 119.8: 1196.
- 35. GONZÁLEZ-ALZAGA, Beatriz, et al. Pre-and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. Environment international, 2015, 85: 229-237.
- 36. GUNNARSSON, Lars-Gunnar; BODIN, Lennart. Parkinson's disease and occupational exposures: a systematic literature review and meta-analyses. Scandinavian journal of work, environment & health, 2017, 43.3: 197-209.

Nitrati e Nitriti

presenti in

- Fertilizzanti azotati che inquinano le falde acquifere
- Carni trattate
- I nitrati vengono ridotti dalla flora batterica salivare e intestinale a nitriti
- I nitriti a loro volta, per l'azione di amine e amidi presenti nello stomaco, nell'intestino e nella vescica, vengono trasformati in N-Nitroso composti

- N-Nitroso composti potenti agenti cancerogeni (provocano neoplasie in 40 specie animali, inclusi i primati)
- maggiore incidenza di **tumori gastrici** in soggetti che assumono nitrati
- possibile correlazione con tumori esofagei, faringei, vescicali, prostatici e LNH tumori cerebrali nel bambino (per assunzione materna in gravidanza)

Preston-Martin, Cancer Research, 1982 Hunchareck, Neuroepidemiology, 2004 Knekt, Int J Cancer, 1999 Cerhan, Biomed Pharmacoter, 1997

Cancerogeni emergenti: Acrilamide

L'acrilammide, ammide dell'acido acrilico

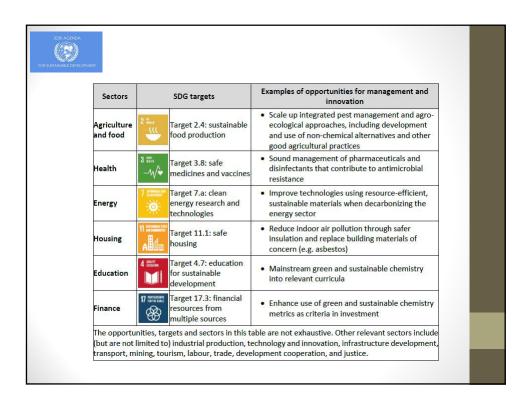
si forma durante la cottura attraverso una reazione tra l'asparagina e gli zuccheri riducenti.

Le patatine fritte, il pane morbido di produzione industriale.

La cancerogenicità è stata dimostrata con studi a lungo termine sull'animale da esperimento

Cancerogeni emergenti: Furano

Nel 2004 la Food and Drugs Administration ha trovato tracce di furano


in alimenti vegetali cotti e conservati

omogeneizzati, pappe pronte a base di vegetali, succhi di frutta;

Dati disponibili sulla tossicità sono solo su animali

Classe 2 b IARC (agente potenzialmente cancerogeno per l'uomo)

